Metamath Proof Explorer


Theorem ovolicc

Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion ovolicc ABABvol*AB=BA

Proof

Step Hyp Ref Expression
1 iccssre ABAB
2 1 3adant3 ABABAB
3 ovolcl ABvol*AB*
4 2 3 syl ABABvol*AB*
5 simp2 ABABB
6 simp1 ABABA
7 5 6 resubcld ABABBA
8 7 rexrd ABABBA*
9 simp3 ABABAB
10 eqeq1 m=nm=1n=1
11 10 ifbid m=nifm=1AB00=ifn=1AB00
12 11 cbvmptv mifm=1AB00=nifn=1AB00
13 6 5 9 12 ovolicc1 ABABvol*ABBA
14 eqeq1 z=yz=supranseq1+absf*<y=supranseq1+absf*<
15 14 anbi2d z=yABran.fz=supranseq1+absf*<ABran.fy=supranseq1+absf*<
16 15 rexbidv z=yf2ABran.fz=supranseq1+absf*<f2ABran.fy=supranseq1+absf*<
17 16 cbvrabv z*|f2ABran.fz=supranseq1+absf*<=y*|f2ABran.fy=supranseq1+absf*<
18 6 5 9 17 ovolicc2 ABABBAvol*AB
19 4 8 13 18 xrletrid ABABvol*AB=BA