Metamath Proof Explorer


Theorem e02

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e02.1 φ
e02.2 ψ,χθ
e02.3 φθτ
Assertion e02 ψ,χτ

Proof

Step Hyp Ref Expression
1 e02.1 φ
2 e02.2 ψ,χθ
3 e02.3 φθτ
4 1 vd02 ψ,χφ
5 4 2 3 e22 ψ,χτ