Metamath Proof Explorer


Theorem e1111

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1111.1 φψ
e1111.2 φχ
e1111.3 φθ
e1111.4 φτ
e1111.5 ψχθτη
Assertion e1111 φη

Proof

Step Hyp Ref Expression
1 e1111.1 φψ
2 e1111.2 φχ
3 e1111.3 φθ
4 e1111.4 φτ
5 e1111.5 ψχθτη
6 1 in1 φψ
7 2 in1 φχ
8 3 in1 φθ
9 4 in1 φτ
10 6 7 8 9 5 ee1111 φη
11 10 dfvd1ir φη