Metamath Proof Explorer


Theorem e1111

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1111.1 (    𝜑    ▶    𝜓    )
e1111.2 (    𝜑    ▶    𝜒    )
e1111.3 (    𝜑    ▶    𝜃    )
e1111.4 (    𝜑    ▶    𝜏    )
e1111.5 ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) )
Assertion e1111 (    𝜑    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e1111.1 (    𝜑    ▶    𝜓    )
2 e1111.2 (    𝜑    ▶    𝜒    )
3 e1111.3 (    𝜑    ▶    𝜃    )
4 e1111.4 (    𝜑    ▶    𝜏    )
5 e1111.5 ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) )
6 1 in1 ( 𝜑𝜓 )
7 2 in1 ( 𝜑𝜒 )
8 3 in1 ( 𝜑𝜃 )
9 4 in1 ( 𝜑𝜏 )
10 6 7 8 9 5 ee1111 ( 𝜑𝜂 )
11 10 dfvd1ir (    𝜑    ▶    𝜂    )