Metamath Proof Explorer


Theorem e121

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e121.1 φψ
e121.2 φ,χθ
e121.3 φτ
e121.4 ψθτη
Assertion e121 φ,χη

Proof

Step Hyp Ref Expression
1 e121.1 φψ
2 e121.2 φ,χθ
3 e121.3 φτ
4 e121.4 ψθτη
5 1 vd12 φ,χψ
6 3 vd12 φ,χτ
7 5 2 6 4 e222 φ,χη