Metamath Proof Explorer


Theorem e13an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e13an.1 φψ
e13an.2 φ,χ,θτ
e13an.3 ψτη
Assertion e13an φ,χ,θη

Proof

Step Hyp Ref Expression
1 e13an.1 φψ
2 e13an.2 φ,χ,θτ
3 e13an.3 ψτη
4 3 ex ψτη
5 1 2 4 e13 φ,χ,θη