Metamath Proof Explorer


Theorem e2ebindALT

Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD . (Contributed by Alan Sare, 11-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion e2ebindALT xx=yxyφyφ

Proof

Step Hyp Ref Expression
1 axc11n xx=yyy=x
2 nfe1 yyφ
3 2 19.9 yyφyφ
4 excom yxφxyφ
5 nfa1 yyy=x
6 id yy=xyy=x
7 biid φφ
8 7 a1i yy=xφφ
9 8 drex1 yy=xyφxφ
10 6 9 syl yy=xyφxφ
11 5 10 alrimi yy=xyyφxφ
12 exbi yyφxφyyφyxφ
13 11 12 syl yy=xyyφyxφ
14 bitr yyφyxφyxφxyφyyφxyφ
15 14 ex yyφyxφyxφxyφyyφxyφ
16 15 impcom yxφxyφyyφyxφyyφxyφ
17 4 13 16 sylancr yy=xyyφxyφ
18 bitr3 yyφxyφyyφyφxyφyφ
19 18 impcom yyφyφyyφxyφxyφyφ
20 3 17 19 sylancr yy=xxyφyφ
21 1 20 syl xx=yxyφyφ