Metamath Proof Explorer


Theorem e2ebindALT

Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD . (Contributed by Alan Sare, 11-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion e2ebindALT ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 axc11n ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 )
2 nfe1 𝑦𝑦 𝜑
3 2 19.9 ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦 𝜑 )
4 excom ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 )
5 nfa1 𝑦𝑦 𝑦 = 𝑥
6 id ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 𝑦 = 𝑥 )
7 biid ( 𝜑𝜑 )
8 7 a1i ( ∀ 𝑦 𝑦 = 𝑥 → ( 𝜑𝜑 ) )
9 8 drex1 ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) )
10 6 9 syl ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) )
11 5 10 alrimi ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) )
12 exbi ( ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 ) )
13 11 12 syl ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 ) )
14 bitr ( ( ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 ) ∧ ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) ) → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) )
15 14 ex ( ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 ) → ( ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) ) )
16 15 impcom ( ( ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) ∧ ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 ) ) → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) )
17 4 13 16 sylancr ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) )
18 bitr3 ( ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) → ( ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) )
19 18 impcom ( ( ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) ) → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )
20 3 17 19 sylancr ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )
21 1 20 syl ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )