| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axc11n |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) |
| 2 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 |
| 3 |
2
|
19.9 |
⊢ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) |
| 4 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 5 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝑦 = 𝑥 |
| 6 |
|
id |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 𝑦 = 𝑥 ) |
| 7 |
|
biid |
⊢ ( 𝜑 ↔ 𝜑 ) |
| 8 |
7
|
a1i |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
| 9 |
8
|
drex1 |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 10 |
6 9
|
syl |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 11 |
5 10
|
alrimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 12 |
|
exbi |
⊢ ( ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) |
| 14 |
|
bitr |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ∧ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 15 |
14
|
ex |
⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) ) |
| 16 |
15
|
impcom |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 17 |
4 13 16
|
sylancr |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 18 |
|
bitr3 |
⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) ) |
| 19 |
18
|
impcom |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
| 20 |
3 17 19
|
sylancr |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
| 21 |
1 20
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |