Step |
Hyp |
Ref |
Expression |
1 |
|
axc11n |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) |
2 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 |
3 |
2
|
19.9 |
⊢ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) |
4 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) |
5 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝑦 = 𝑥 |
6 |
|
id |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 𝑦 = 𝑥 ) |
7 |
|
biid |
⊢ ( 𝜑 ↔ 𝜑 ) |
8 |
7
|
a1i |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
9 |
8
|
drex1 |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
10 |
6 9
|
syl |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
11 |
5 10
|
alrimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
12 |
|
exbi |
⊢ ( ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) |
13 |
11 12
|
syl |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) |
14 |
|
bitr |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ∧ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
15 |
14
|
ex |
⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) ) |
16 |
15
|
impcom |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
17 |
4 13 16
|
sylancr |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
18 |
|
bitr3 |
⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) ) |
19 |
18
|
impcom |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
20 |
3 17 19
|
sylancr |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
21 |
1 20
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |