| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑢 ∈ V |
| 2 |
|
ax6e |
⊢ ∃ 𝑦 𝑦 = 𝑣 |
| 3 |
1 2
|
pm3.2i |
⊢ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) |
| 4 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) ) |
| 5 |
4
|
biimpri |
⊢ ( ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) → ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ) |
| 6 |
3 5
|
ax-mp |
⊢ ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) |
| 7 |
|
isset |
⊢ ( 𝑢 ∈ V ↔ ∃ 𝑥 𝑥 = 𝑢 ) |
| 8 |
7
|
anbi1i |
⊢ ( ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 10 |
6 9
|
mpbi |
⊢ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) |
| 11 |
|
id |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 12 |
|
hbnae |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 13 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 14 |
|
ax-5 |
⊢ ( 𝑧 = 𝑣 → ∀ 𝑥 𝑧 = 𝑣 ) |
| 15 |
|
ax-5 |
⊢ ( 𝑦 = 𝑣 → ∀ 𝑧 𝑦 = 𝑣 ) |
| 16 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
| 17 |
|
equequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
| 18 |
17
|
a1i |
⊢ ( ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) → ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) ) |
| 19 |
16 18
|
ax-mp |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
| 20 |
14 15 19
|
dvelimh |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 21 |
11 20
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 22 |
21
|
idiALT |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 23 |
22
|
alimi |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 24 |
13 23
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 25 |
11 24
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
| 26 |
|
19.41rg |
⊢ ( ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 28 |
27
|
idiALT |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 29 |
28
|
alimi |
⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 30 |
12 29
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 31 |
11 30
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 32 |
|
exim |
⊢ ( ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 34 |
|
pm3.35 |
⊢ ( ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 35 |
10 33 34
|
sylancr |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 36 |
|
excomim |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 38 |
37
|
idiALT |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |