Metamath Proof Explorer


Theorem dvelimh

Description: Version of dvelim without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . Check out dvelimhw for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
dvelimh.2 ( 𝜓 → ∀ 𝑧 𝜓 )
dvelimh.3 ( 𝑧 = 𝑦 → ( 𝜑𝜓 ) )
Assertion dvelimh ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 dvelimh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 dvelimh.2 ( 𝜓 → ∀ 𝑧 𝜓 )
3 dvelimh.3 ( 𝑧 = 𝑦 → ( 𝜑𝜓 ) )
4 1 nf5i 𝑥 𝜑
5 2 nf5i 𝑧 𝜓
6 4 5 3 dvelimf ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 )
7 6 nf5rd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) )