Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd is ax6e2ndVD without virtual deductions and was automatically derived from ax6e2ndVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
1:: | |- E. y y = v |
2:: | |- u e.V |
3:1,2: | |- ( u e. V /\ E. y y = v ) |
4:3: | |- E. y ( u e.V /\ y = v ) |
5:: | |- ( u e. V <-> E. x x = u ) |
6:5: | |- ( ( u e.V /\ y = v ) <-> ( E. x x = u /\ y = v ) ) |
7:6: | |- ( E. y ( u e. V /\ y = v ) <-> E. y ( E. x x = u /\ y = v ) ) |
8:4,7: | |- E. y ( E. x x = u /\ y = v ) |
9:: | |- ( z = v -> A. x z = v ) |
10:: | |- ( y = v -> A. z y = v ) |
11:: | |- (. z = y ->. z = y ). |
12:11: | |- (. z = y ->. ( z = v <-> y = v ) ). |
120:11: | |- ( z = y -> ( z = v <-> y = v ) ) |
13:9,10,120: | |- ( -. A. x x = y -> ( y = v -> A. x y = v ) ) |
14:: | |- (. -. A. x x = y ->. -. A. x x = y ). |
15:14,13: | |- (. -. A. x x = y ->. ( y = v -> A. x y = v ) ). |
16:15: | |- ( -. A. x x = y -> ( y = v -> A. x y = v ) ) |
17:16: | |- ( A. x -. A. x x = y -> A. x ( y = v -> A. x y = v ) ) |
18:: | |- ( -. A. x x = y -> A. x -. A. x x = y ) |
19:17,18: | |- ( -. A. x x = y -> A. x ( y = v -> A. x y = v ) ) |
20:14,19: | |- (. -. A. x x = y ->. A. x ( y = v -> A. x y = v ) ). |
21:20: | |- (. -. A. x x = y ->. ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ). |
22:21: | |- ( -. A. x x = y -> ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
23:22: | |- ( A. y -. A. x x = y -> A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
24:: | |- ( -. A. x x = y -> A. y -. A. x x = y ) |
25:23,24: | |- ( -. A. x x = y -> A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ) |
26:14,25: | |- (. -. A. x x = y ->. A. y ( ( E. x x = u /\ y = v ) -> E. x ( x = u /\ y = v ) ) ). |
27:26: | |- (. -. A. x x = y ->. ( E. y ( E. x x = u /\ y = v ) -> E. y E. x ( x = u /\ y = v ) ) ). |
28:8,27: | |- (. -. A. x x = y ->. E. y E. x ( x = u /\ y = v ) ). |
29:28: | |- (. -. A. x x = y ->. E. x E. y ( x = u /\ y = v ) ). |
qed:29: | |- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | ax6e2ndVD | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | ⊢ 𝑢 ∈ V | |
2 | ax6e | ⊢ ∃ 𝑦 𝑦 = 𝑣 | |
3 | 1 2 | pm3.2i | ⊢ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) |
4 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) ) | |
5 | 4 | biimpri | ⊢ ( ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) → ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ) |
6 | 3 5 | e0a | ⊢ ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) |
7 | isset | ⊢ ( 𝑢 ∈ V ↔ ∃ 𝑥 𝑥 = 𝑢 ) | |
8 | 7 | anbi1i | ⊢ ( ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
9 | 8 | exbii | ⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
10 | 6 9 | mpbi | ⊢ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) |
11 | idn1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
12 | hbnae | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
13 | hbn1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
14 | ax-5 | ⊢ ( 𝑧 = 𝑣 → ∀ 𝑥 𝑧 = 𝑣 ) | |
15 | ax-5 | ⊢ ( 𝑦 = 𝑣 → ∀ 𝑧 𝑦 = 𝑣 ) | |
16 | idn1 | ⊢ ( 𝑧 = 𝑦 ▶ 𝑧 = 𝑦 ) | |
17 | equequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) | |
18 | 16 17 | e1a | ⊢ ( 𝑧 = 𝑦 ▶ ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
19 | 18 | in1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
20 | 14 15 19 | dvelimh | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
21 | 11 20 | e1a | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
22 | 21 | in1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
23 | 22 | alimi | ⊢ ( ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
24 | 13 23 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
25 | 11 24 | e1a | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
26 | 19.41rg | ⊢ ( ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
27 | 25 26 | e1a | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
28 | 27 | in1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
29 | 28 | alimi | ⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
30 | 12 29 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
31 | 11 30 | e1a | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
32 | exim | ⊢ ( ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
33 | 31 32 | e1a | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
34 | pm2.27 | ⊢ ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) | |
35 | 10 33 34 | e01 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
36 | excomim | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
37 | 35 36 | e1a | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
38 | 37 | in1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |