Step |
Hyp |
Ref |
Expression |
1 |
|
ax6e2nd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
2 |
|
ax6e2eq |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
3 |
1
|
a1d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
4 |
|
exmid |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ∨ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
5 |
|
jao |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) → ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) → ( ( ∀ 𝑥 𝑥 = 𝑦 ∨ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) ) ) |
6 |
5
|
3imp |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) ∧ ( ∀ 𝑥 𝑥 = 𝑦 ∨ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
7 |
2 3 4 6
|
mp3an |
⊢ ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
8 |
1 7
|
jaoi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
9 |
|
hbnae |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
10 |
9
|
eximi |
⊢ ( ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
11 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
12 |
11
|
19.9 |
⊢ ( ∃ 𝑦 ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
13 |
10 12
|
sylib |
⊢ ( ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
14 |
|
sp |
⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
15 |
13 14
|
syl |
⊢ ( ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
16 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
17 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 |
18 |
17
|
nfn |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
19 |
18
|
19.9 |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
20 |
|
id |
⊢ ( 𝑢 ≠ 𝑣 → 𝑢 ≠ 𝑣 ) |
21 |
|
simpr |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
22 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → 𝑥 = 𝑢 ) |
24 |
|
pm13.181 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑢 ≠ 𝑣 ) → 𝑥 ≠ 𝑣 ) |
25 |
24
|
ancoms |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ 𝑥 = 𝑢 ) → 𝑥 ≠ 𝑣 ) |
26 |
20 23 25
|
syl2an2r |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → 𝑥 ≠ 𝑣 ) |
27 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
28 |
21 27
|
syl |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → 𝑦 = 𝑣 ) |
29 |
|
neeq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣 ) ) |
30 |
29
|
biimparc |
⊢ ( ( 𝑥 ≠ 𝑣 ∧ 𝑦 = 𝑣 ) → 𝑥 ≠ 𝑦 ) |
31 |
26 28 30
|
syl2anc |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → 𝑥 ≠ 𝑦 ) |
32 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
33 |
32
|
bicomi |
⊢ ( ¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦 ) |
34 |
|
sp |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
35 |
34
|
con3i |
⊢ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
36 |
33 35
|
sylbir |
⊢ ( 𝑥 ≠ 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
37 |
31 36
|
syl |
⊢ ( ( 𝑢 ≠ 𝑣 ∧ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
38 |
37
|
ex |
⊢ ( 𝑢 ≠ 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
39 |
38
|
alrimiv |
⊢ ( 𝑢 ≠ 𝑣 → ∀ 𝑥 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
40 |
|
exim |
⊢ ( ∀ 𝑥 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
41 |
39 40
|
syl |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
42 |
|
imbi2 |
⊢ ( ( ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ↔ ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) ) |
43 |
42
|
biimpa |
⊢ ( ( ( ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
44 |
19 41 43
|
sylancr |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
45 |
44
|
alrimiv |
⊢ ( 𝑢 ≠ 𝑣 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
46 |
|
exim |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
47 |
45 46
|
syl |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
48 |
|
imbi1 |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ↔ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) ) |
49 |
48
|
biimpar |
⊢ ( ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ∧ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
50 |
16 47 49
|
sylancr |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
51 |
|
pm3.34 |
⊢ ( ( ( ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
52 |
15 50 51
|
sylancr |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
53 |
|
orc |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
54 |
53
|
imim2i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
55 |
52 54
|
syl |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
56 |
55
|
idiALT |
⊢ ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
57 |
|
id |
⊢ ( 𝑢 = 𝑣 → 𝑢 = 𝑣 ) |
58 |
|
ax-1 |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑢 = 𝑣 ) ) |
59 |
57 58
|
syl |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑢 = 𝑣 ) ) |
60 |
|
olc |
⊢ ( 𝑢 = 𝑣 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
61 |
60
|
imim2i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑢 = 𝑣 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
62 |
59 61
|
syl |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
63 |
62
|
idiALT |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
64 |
|
exmidne |
⊢ ( 𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣 ) |
65 |
|
jao |
⊢ ( ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) → ( ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) → ( ( 𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) ) ) |
66 |
65
|
3imp21 |
⊢ ( ( ( 𝑢 ≠ 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) ∧ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) ∧ ( 𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) ) |
67 |
56 63 64 66
|
mp3an |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
68 |
8 67
|
impbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |