| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑢 |
| 2 |
|
hbae |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) |
| 3 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → 𝑦 = 𝑢 ) ) |
| 4 |
3
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → 𝑦 = 𝑢 ) ) |
| 5 |
4
|
ancld |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
| 6 |
2 5
|
eximdh |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 𝑥 = 𝑢 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
| 7 |
1 6
|
mpi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 8 |
7
|
axc4i |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 9 |
|
axc11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
| 10 |
8 9
|
mpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 11 |
|
19.2 |
⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 13 |
|
excomim |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
| 15 |
|
equtrr |
⊢ ( 𝑢 = 𝑣 → ( 𝑦 = 𝑢 → 𝑦 = 𝑣 ) ) |
| 16 |
15
|
anim2d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 17 |
16
|
2eximdv |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 18 |
14 17
|
syl5com |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |