Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑥 𝑥 = 𝑦 ) |
2 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑢 |
3 |
|
hba1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) |
4 |
|
sp |
⊢ ( ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 𝑥 = 𝑦 ) |
5 |
3 4
|
impbii |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) |
6 |
|
idn2 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 ) |
7 |
|
sp |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
8 |
1 7
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ 𝑥 = 𝑦 ) |
9 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → 𝑦 = 𝑢 ) ) |
10 |
9
|
com12 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 = 𝑦 → 𝑦 = 𝑢 ) ) |
11 |
6 8 10
|
e21 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 ) |
12 |
|
pm3.2 |
⊢ ( 𝑥 = 𝑢 → ( 𝑦 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
13 |
6 11 12
|
e22 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
14 |
13
|
in2 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
15 |
14
|
in1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
16 |
15
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
17 |
5 16
|
sylbi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
18 |
1 17
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑥 ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
19 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) → ( ∃ 𝑥 𝑥 = 𝑢 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
20 |
18 19
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ( ∃ 𝑥 𝑥 = 𝑢 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
21 |
|
pm2.27 |
⊢ ( ∃ 𝑥 𝑥 = 𝑢 → ( ( ∃ 𝑥 𝑥 = 𝑢 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
22 |
2 20 21
|
e01 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
23 |
22
|
in1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
24 |
23
|
axc4i |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
25 |
1 24
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
26 |
|
axc11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
27 |
1 25 26
|
e11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
28 |
|
19.2 |
⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
29 |
27 28
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
30 |
|
excomim |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
31 |
29 30
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
32 |
|
idn1 |
⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 ) |
33 |
|
idn2 |
⊢ ( 𝑢 = 𝑣 , ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ▶ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
34 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑦 = 𝑢 ) |
35 |
33 34
|
e2 |
⊢ ( 𝑢 = 𝑣 , ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ▶ 𝑦 = 𝑢 ) |
36 |
|
equtrr |
⊢ ( 𝑢 = 𝑣 → ( 𝑦 = 𝑢 → 𝑦 = 𝑣 ) ) |
37 |
32 35 36
|
e12 |
⊢ ( 𝑢 = 𝑣 , ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ▶ 𝑦 = 𝑣 ) |
38 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → 𝑥 = 𝑢 ) |
39 |
33 38
|
e2 |
⊢ ( 𝑢 = 𝑣 , ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ▶ 𝑥 = 𝑢 ) |
40 |
|
pm3.21 |
⊢ ( 𝑦 = 𝑣 → ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
41 |
37 39 40
|
e22 |
⊢ ( 𝑢 = 𝑣 , ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ▶ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
42 |
41
|
in2 |
⊢ ( 𝑢 = 𝑣 ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
43 |
42
|
gen11 |
⊢ ( 𝑢 = 𝑣 ▶ ∀ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
44 |
|
exim |
⊢ ( ∀ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
45 |
43 44
|
e1a |
⊢ ( 𝑢 = 𝑣 ▶ ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
46 |
45
|
gen11 |
⊢ ( 𝑢 = 𝑣 ▶ ∀ 𝑥 ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
47 |
|
exim |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
48 |
46 47
|
e1a |
⊢ ( 𝑢 = 𝑣 ▶ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
49 |
48
|
in1 |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
50 |
|
pm2.04 |
⊢ ( ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) ) |
51 |
50
|
com12 |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) ) |
52 |
31 49 51
|
e10 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
53 |
52
|
in1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |