Metamath Proof Explorer


Theorem ax6e2eq

Description: Alternate form of ax6e for non-distinct x , y and u = v . ax6e2eq is derived from ax6e2eqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6e2eq xx=yu=vxyx=uy=v

Proof

Step Hyp Ref Expression
1 ax6ev xx=u
2 hbae xx=yxxx=y
3 ax7 x=yx=uy=u
4 3 sps xx=yx=uy=u
5 4 ancld xx=yx=ux=uy=u
6 2 5 eximdh xx=yxx=uxx=uy=u
7 1 6 mpi xx=yxx=uy=u
8 7 axc4i xx=yxxx=uy=u
9 axc11 xx=yxxx=uy=uyxx=uy=u
10 8 9 mpd xx=yyxx=uy=u
11 19.2 yxx=uy=uyxx=uy=u
12 10 11 syl xx=yyxx=uy=u
13 excomim yxx=uy=uxyx=uy=u
14 12 13 syl xx=yxyx=uy=u
15 equtrr u=vy=uy=v
16 15 anim2d u=vx=uy=ux=uy=v
17 16 2eximdv u=vxyx=uy=uxyx=uy=v
18 14 17 syl5com xx=yu=vxyx=uy=v