Metamath Proof Explorer


Theorem ax6e2eq

Description: Alternate form of ax6e for non-distinct x , y and u = v . ax6e2eq is derived from ax6e2eqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6e2eq x x = y u = v x y x = u y = v

Proof

Step Hyp Ref Expression
1 ax6ev x x = u
2 hbae x x = y x x x = y
3 ax7 x = y x = u y = u
4 3 sps x x = y x = u y = u
5 4 ancld x x = y x = u x = u y = u
6 2 5 eximdh x x = y x x = u x x = u y = u
7 1 6 mpi x x = y x x = u y = u
8 7 axc4i x x = y x x x = u y = u
9 axc11 x x = y x x x = u y = u y x x = u y = u
10 8 9 mpd x x = y y x x = u y = u
11 19.2 y x x = u y = u y x x = u y = u
12 10 11 syl x x = y y x x = u y = u
13 excomim y x x = u y = u x y x = u y = u
14 12 13 syl x x = y x y x = u y = u
15 equtrr u = v y = u y = v
16 15 anim2d u = v x = u y = u x = u y = v
17 16 2eximdv u = v x y x = u y = u x y x = u y = v
18 14 17 syl5com x x = y u = v x y x = u y = v