Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind is e2ebindVD without virtual deductions and was automatically derived from e2ebindVD .
| 1:: | |- ( ph <-> ph ) |
| 2:1: | |- ( A. y y = x -> ( ph <-> ph ) ) |
| 3:2: | |- ( A. y y = x -> ( E. y ph <-> E. x ph ) ) |
| 4:: | |- (. A. y y = x ->. A. y y = x ). |
| 5:3,4: | |- (. A. y y = x ->. ( E. y ph <-> E. x ph ) ). |
| 6:: | |- ( A. y y = x -> A. y A. y y = x ) |
| 7:5,6: | |- (. A. y y = x ->. A. y ( E. y ph <-> E. x ph ) ). |
| 8:7: | |- (. A. y y = x ->. ( E. y E. y ph <-> E. y E. x ph ) ). |
| 9:: | |- ( E. y E. x ph <-> E. x E. y ph ) |
| 10:8,9: | |- (. A. y y = x ->. ( E. y E. y ph <-> E. x E. y ph ) ). |
| 11:: | |- ( E. y ph -> A. y E. y ph ) |
| 12:11: | |- ( E. y E. y ph <-> E. y ph ) |
| 13:10,12: | |- (. A. y y = x ->. ( E. x E. y ph <-> E. y ph ) ). |
| 14:13: | |- ( A. y y = x -> ( E. x E. y ph <-> E. y ph ) ) |
| 15:: | |- ( A. y y = x <-> A. x x = y ) |
| qed:14,15: | |- ( A. x x = y -> ( E. x E. y ph <-> E. y ph ) ) |
| Ref | Expression | ||
|---|---|---|---|
| Assertion | e2ebindVD | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc11n | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) | |
| 2 | hba1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ∀ 𝑦 𝑦 = 𝑥 ) | |
| 3 | idn1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ∀ 𝑦 𝑦 = 𝑥 ) | |
| 4 | biid | ⊢ ( 𝜑 ↔ 𝜑 ) | |
| 5 | 4 | a1i | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
| 6 | 5 | drex1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 7 | 3 6 | e1a | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 8 | 2 7 | gen11nv | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 9 | exbi | ⊢ ( ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) | |
| 10 | 8 9 | e1a | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) |
| 11 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) | |
| 12 | bibi1 | ⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) ) | |
| 13 | 12 | biimprd | ⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) ) |
| 14 | 10 11 13 | e10 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 15 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 | |
| 16 | 15 | 19.9 | ⊢ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) |
| 17 | bitr3 | ⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) ) | |
| 18 | 14 16 17 | e10 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
| 19 | 18 | in1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
| 20 | 1 19 | syl | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |