Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind is e2ebindVD without virtual deductions and was automatically derived from e2ebindVD .
1:: | |- ( ph <-> ph ) |
2:1: | |- ( A. y y = x -> ( ph <-> ph ) ) |
3:2: | |- ( A. y y = x -> ( E. y ph <-> E. x ph ) ) |
4:: | |- (. A. y y = x ->. A. y y = x ). |
5:3,4: | |- (. A. y y = x ->. ( E. y ph <-> E. x ph ) ). |
6:: | |- ( A. y y = x -> A. y A. y y = x ) |
7:5,6: | |- (. A. y y = x ->. A. y ( E. y ph <-> E. x ph ) ). |
8:7: | |- (. A. y y = x ->. ( E. y E. y ph <-> E. y E. x ph ) ). |
9:: | |- ( E. y E. x ph <-> E. x E. y ph ) |
10:8,9: | |- (. A. y y = x ->. ( E. y E. y ph <-> E. x E. y ph ) ). |
11:: | |- ( E. y ph -> A. y E. y ph ) |
12:11: | |- ( E. y E. y ph <-> E. y ph ) |
13:10,12: | |- (. A. y y = x ->. ( E. x E. y ph <-> E. y ph ) ). |
14:13: | |- ( A. y y = x -> ( E. x E. y ph <-> E. y ph ) ) |
15:: | |- ( A. y y = x <-> A. x x = y ) |
qed:14,15: | |- ( A. x x = y -> ( E. x E. y ph <-> E. y ph ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | e2ebindVD | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11n | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) | |
2 | hba1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ∀ 𝑦 𝑦 = 𝑥 ) | |
3 | idn1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ∀ 𝑦 𝑦 = 𝑥 ) | |
4 | biid | ⊢ ( 𝜑 ↔ 𝜑 ) | |
5 | 4 | a1i | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
6 | 5 | drex1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
7 | 3 6 | e1a | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
8 | 2 7 | gen11nv | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
9 | exbi | ⊢ ( ∀ 𝑦 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) | |
10 | 8 9 | e1a | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) ) |
11 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) | |
12 | bibi1 | ⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) ) | |
13 | 12 | biimprd | ⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) ) |
14 | 10 11 13 | e10 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
15 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 | |
16 | 15 | 19.9 | ⊢ ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) |
17 | bitr3 | ⊢ ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) → ( ( ∃ 𝑦 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) ) | |
18 | 14 16 17 | e10 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 ▶ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
19 | 18 | in1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |
20 | 1 19 | syl | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) ) |