Metamath Proof Explorer


Theorem gen11nv

Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih is gen11nv without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gen11nv.1 ( 𝜑 → ∀ 𝑥 𝜑 )
gen11nv.2 (    𝜑    ▶    𝜓    )
Assertion gen11nv (    𝜑    ▶   𝑥 𝜓    )

Proof

Step Hyp Ref Expression
1 gen11nv.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 gen11nv.2 (    𝜑    ▶    𝜓    )
3 2 in1 ( 𝜑𝜓 )
4 1 3 alrimih ( 𝜑 → ∀ 𝑥 𝜓 )
5 4 dfvd1ir (    𝜑    ▶   𝑥 𝜓    )