Metamath Proof Explorer


Theorem e30an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e30an.1 φ,ψ,χθ
e30an.2 τ
e30an.3 θτη
Assertion e30an φ,ψ,χη

Proof

Step Hyp Ref Expression
1 e30an.1 φ,ψ,χθ
2 e30an.2 τ
3 e30an.3 θτη
4 3 ex θτη
5 1 2 4 e30 φ,ψ,χη