Metamath Proof Explorer


Theorem ecdmn0

Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecdmn0 AdomRAR

Proof

Step Hyp Ref Expression
1 elex AdomRAV
2 n0 ARxxAR
3 ecexr xARAV
4 3 exlimiv xxARAV
5 2 4 sylbi ARAV
6 vex xV
7 elecg xVAVxARARx
8 6 7 mpan AVxARARx
9 8 exbidv AVxxARxARx
10 2 a1i AVARxxAR
11 eldmg AVAdomRxARx
12 9 10 11 3bitr4rd AVAdomRAR
13 1 5 12 pm5.21nii AdomRAR