Metamath Proof Explorer


Theorem ecelqsg

Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecelqsg RVBABRA/R

Proof

Step Hyp Ref Expression
1 eqid BR=BR
2 eceq1 x=BxR=BR
3 2 rspceeqv BABR=BRxABR=xR
4 1 3 mpan2 BAxABR=xR
5 ecexg RVBRV
6 elqsg BRVBRA/RxABR=xR
7 5 6 syl RVBRA/RxABR=xR
8 7 biimpar RVxABR=xRBRA/R
9 4 8 sylan2 RVBABRA/R