Metamath Proof Explorer


Theorem ectocl

Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1 S=B/R
ectocl.2 xR=Aφψ
ectocl.3 xBφ
Assertion ectocl ASψ

Proof

Step Hyp Ref Expression
1 ectocl.1 S=B/R
2 ectocl.2 xR=Aφψ
3 ectocl.3 xBφ
4 tru
5 3 adantl xBφ
6 1 2 5 ectocld ASψ
7 4 6 mpan ASψ