Metamath Proof Explorer


Theorem ee200

Description: e200 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee200.1 φ ψ χ
ee200.2 θ
ee200.3 τ
ee200.4 χ θ τ η
Assertion ee200 φ ψ η

Proof

Step Hyp Ref Expression
1 ee200.1 φ ψ χ
2 ee200.2 θ
3 ee200.3 τ
4 ee200.4 χ θ τ η
5 2 a1i ψ θ
6 5 a1i φ ψ θ
7 3 a1i ψ τ
8 7 a1i φ ψ τ
9 1 6 8 4 ee222 φ ψ η