Metamath Proof Explorer


Theorem ee200

Description: e200 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee200.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee200.2 𝜃
ee200.3 𝜏
ee200.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee200 ( 𝜑 → ( 𝜓𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee200.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee200.2 𝜃
3 ee200.3 𝜏
4 ee200.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 2 a1i ( 𝜓𝜃 )
6 5 a1i ( 𝜑 → ( 𝜓𝜃 ) )
7 3 a1i ( 𝜓𝜏 )
8 7 a1i ( 𝜑 → ( 𝜓𝜏 ) )
9 1 6 8 4 ee222 ( 𝜑 → ( 𝜓𝜂 ) )