Metamath Proof Explorer


Theorem e221

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e221.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e221.2 (    𝜑    ,    𝜓    ▶    𝜃    )
e221.3 (    𝜑    ▶    𝜏    )
e221.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion e221 (    𝜑    ,    𝜓    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e221.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e221.2 (    𝜑    ,    𝜓    ▶    𝜃    )
3 e221.3 (    𝜑    ▶    𝜏    )
4 e221.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 3 vd12 (    𝜑    ,    𝜓    ▶    𝜏    )
6 1 2 5 4 e222 (    𝜑    ,    𝜓    ▶    𝜂    )