Metamath Proof Explorer


Theorem ee33VD

Description: Non-virtual deduction form of e33 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 is ee33VD without virtual deductions and was automatically derived from ee33VD .

h1:: |- ( ph -> ( ps -> ( ch -> th ) ) )
h2:: |- ( ph -> ( ps -> ( ch -> ta ) ) )
h3:: |- ( th -> ( ta -> et ) )
4:1,3: |- ( ph -> ( ps -> ( ch -> ( ta -> et ) ) ) )
5:4: |- ( ta -> ( ph -> ( ps -> ( ch -> et ) ) ) )
6:2,5: |- ( ph -> ( ps -> ( ch -> ( ph -> ( ps -> ( ch -> et ) ) ) ) ) )
7:6: |- ( ps -> ( ch -> ( ph -> ( ps -> ( ch -> et ) ) ) ) )
8:7: |- ( ch -> ( ph -> ( ps -> ( ch -> et ) ) ) )
qed:8: |- ( ph -> ( ps -> ( ch -> et ) ) )
(Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee33VD.1 φψχθ
ee33VD.2 φψχτ
ee33VD.3 θτη
Assertion ee33VD φψχη

Proof

Step Hyp Ref Expression
1 ee33VD.1 φψχθ
2 ee33VD.2 φψχτ
3 ee33VD.3 θτη
4 1 3 syl8 φψχτη
5 4 com4r τφψχη
6 2 5 syl8 φψχφψχη
7 pm2.43cbi φψχφψχηψχφψχη
8 7 biimpi φψχφψχηψχφψχη
9 6 8 e0a ψχφψχη
10 pm2.43cbi ψχφψχηχφψχη
11 10 biimpi ψχφψχηχφψχη
12 9 11 e0a χφψχη
13 pm2.43cbi χφψχηφψχη
14 13 biimpi χφψχηφψχη
15 12 14 e0a φψχη