Metamath Proof Explorer


Theorem ee4anv

Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv . (Contributed by NM, 31-Jul-1995) Remove disjoint variable conditions on y , z and x , w . (Revised by Eric Schmidt, 26-Oct-2025)

Ref Expression
Assertion ee4anv x y z w φ ψ x y φ z w ψ

Proof

Step Hyp Ref Expression
1 excom y z w φ ψ z y w φ ψ
2 1 exbii x y z w φ ψ x z y w φ ψ
3 eeanv y w φ ψ y φ w ψ
4 3 2exbii x z y w φ ψ x z y φ w ψ
5 nfv z φ
6 5 nfex z y φ
7 nfv x ψ
8 7 nfex x w ψ
9 6 8 eean x z y φ w ψ x y φ z w ψ
10 2 4 9 3bitri x y z w φ ψ x y φ z w ψ