Metamath Proof Explorer


Theorem ee4anv

Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv . (Contributed by NM, 31-Jul-1995)

Ref Expression
Assertion ee4anv xyzwφψxyφzwψ

Proof

Step Hyp Ref Expression
1 excom yzwφψzywφψ
2 1 exbii xyzwφψxzywφψ
3 eeanv ywφψyφwψ
4 3 2exbii xzywφψxzyφwψ
5 eeanv xzyφwψxyφzwψ
6 2 4 5 3bitri xyzwφψxyφzwψ