Metamath Proof Explorer


Theorem ee4anvOLD

Description: Obsolete version of ee4anv as of 26-Oct-2025. (Contributed by NM, 31-Jul-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ee4anvOLD x y z w φ ψ x y φ z w ψ

Proof

Step Hyp Ref Expression
1 excom y z w φ ψ z y w φ ψ
2 1 exbii x y z w φ ψ x z y w φ ψ
3 eeanv y w φ ψ y φ w ψ
4 3 2exbii x z y w φ ψ x z y φ w ψ
5 eeanv x z y φ w ψ x y φ z w ψ
6 2 4 5 3bitri x y z w φ ψ x y φ z w ψ