Metamath Proof Explorer


Theorem ee4anvOLD

Description: Obsolete version of ee4anv as of 26-Oct-2025. (Contributed by NM, 31-Jul-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ee4anvOLD ( ∃ 𝑥𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )

Proof

Step Hyp Ref Expression
1 excom ( ∃ 𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑧𝑦𝑤 ( 𝜑𝜓 ) )
2 1 exbii ( ∃ 𝑥𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) )
3 eeanv ( ∃ 𝑦𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) )
4 3 2exbii ( ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) )
5 eeanv ( ∃ 𝑥𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )
6 2 4 5 3bitri ( ∃ 𝑥𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )