Metamath Proof Explorer


Theorem eel00001

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel00001.1 φ
eel00001.2 ψ
eel00001.3 χ
eel00001.4 θ
eel00001.5 τη
eel00001.6 φψχθηζ
Assertion eel00001 τζ

Proof

Step Hyp Ref Expression
1 eel00001.1 φ
2 eel00001.2 ψ
3 eel00001.3 χ
4 eel00001.4 θ
5 eel00001.5 τη
6 eel00001.6 φψχθηζ
7 6 exp41 φψχθηζ
8 1 2 7 mp2an χθηζ
9 3 4 8 mp2 ηζ
10 5 9 syl τζ