Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eel00001.1 | |- ph |
|
eel00001.2 | |- ps |
||
eel00001.3 | |- ch |
||
eel00001.4 | |- th |
||
eel00001.5 | |- ( ta -> et ) |
||
eel00001.6 | |- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ et ) -> ze ) |
||
Assertion | eel00001 | |- ( ta -> ze ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel00001.1 | |- ph |
|
2 | eel00001.2 | |- ps |
|
3 | eel00001.3 | |- ch |
|
4 | eel00001.4 | |- th |
|
5 | eel00001.5 | |- ( ta -> et ) |
|
6 | eel00001.6 | |- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ et ) -> ze ) |
|
7 | 6 | exp41 | |- ( ( ph /\ ps ) -> ( ch -> ( th -> ( et -> ze ) ) ) ) |
8 | 1 2 7 | mp2an | |- ( ch -> ( th -> ( et -> ze ) ) ) |
9 | 3 4 8 | mp2 | |- ( et -> ze ) |
10 | 5 9 | syl | |- ( ta -> ze ) |