Metamath Proof Explorer


Theorem eel00001

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel00001.1
|- ph
eel00001.2
|- ps
eel00001.3
|- ch
eel00001.4
|- th
eel00001.5
|- ( ta -> et )
eel00001.6
|- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ et ) -> ze )
Assertion eel00001
|- ( ta -> ze )

Proof

Step Hyp Ref Expression
1 eel00001.1
 |-  ph
2 eel00001.2
 |-  ps
3 eel00001.3
 |-  ch
4 eel00001.4
 |-  th
5 eel00001.5
 |-  ( ta -> et )
6 eel00001.6
 |-  ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ et ) -> ze )
7 6 exp41
 |-  ( ( ph /\ ps ) -> ( ch -> ( th -> ( et -> ze ) ) ) )
8 1 2 7 mp2an
 |-  ( ch -> ( th -> ( et -> ze ) ) )
9 3 4 8 mp2
 |-  ( et -> ze )
10 5 9 syl
 |-  ( ta -> ze )