Metamath Proof Explorer


Theorem eel00001

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel00001.1 𝜑
eel00001.2 𝜓
eel00001.3 𝜒
eel00001.4 𝜃
eel00001.5 ( 𝜏𝜂 )
eel00001.6 ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜂 ) → 𝜁 )
Assertion eel00001 ( 𝜏𝜁 )

Proof

Step Hyp Ref Expression
1 eel00001.1 𝜑
2 eel00001.2 𝜓
3 eel00001.3 𝜒
4 eel00001.4 𝜃
5 eel00001.5 ( 𝜏𝜂 )
6 eel00001.6 ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜂 ) → 𝜁 )
7 6 exp41 ( ( 𝜑𝜓 ) → ( 𝜒 → ( 𝜃 → ( 𝜂𝜁 ) ) ) )
8 1 2 7 mp2an ( 𝜒 → ( 𝜃 → ( 𝜂𝜁 ) ) )
9 3 4 8 mp2 ( 𝜂𝜁 )
10 5 9 syl ( 𝜏𝜁 )