Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eel00001.1 | ⊢ 𝜑 | |
| eel00001.2 | ⊢ 𝜓 | ||
| eel00001.3 | ⊢ 𝜒 | ||
| eel00001.4 | ⊢ 𝜃 | ||
| eel00001.5 | ⊢ ( 𝜏 → 𝜂 ) | ||
| eel00001.6 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜂 ) → 𝜁 ) | ||
| Assertion | eel00001 | ⊢ ( 𝜏 → 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel00001.1 | ⊢ 𝜑 | |
| 2 | eel00001.2 | ⊢ 𝜓 | |
| 3 | eel00001.3 | ⊢ 𝜒 | |
| 4 | eel00001.4 | ⊢ 𝜃 | |
| 5 | eel00001.5 | ⊢ ( 𝜏 → 𝜂 ) | |
| 6 | eel00001.6 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜂 ) → 𝜁 ) | |
| 7 | 6 | exp41 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) ) |
| 8 | 1 2 7 | mp2an | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) |
| 9 | 3 4 8 | mp2 | ⊢ ( 𝜂 → 𝜁 ) |
| 10 | 5 9 | syl | ⊢ ( 𝜏 → 𝜁 ) |