Metamath Proof Explorer
Description: Elimination rule similar eel0000 , except with five hpothesis steps.
(Contributed by Alan Sare, 17-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
eel00000.1 |
⊢ 𝜑 |
|
|
eel00000.2 |
⊢ 𝜓 |
|
|
eel00000.3 |
⊢ 𝜒 |
|
|
eel00000.4 |
⊢ 𝜃 |
|
|
eel00000.5 |
⊢ 𝜏 |
|
|
eel00000.6 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
eel00000 |
⊢ 𝜂 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eel00000.1 |
⊢ 𝜑 |
2 |
|
eel00000.2 |
⊢ 𝜓 |
3 |
|
eel00000.3 |
⊢ 𝜒 |
4 |
|
eel00000.4 |
⊢ 𝜃 |
5 |
|
eel00000.5 |
⊢ 𝜏 |
6 |
|
eel00000.6 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) |
7 |
6
|
exp41 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) |
8 |
1 7
|
mpan |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) |
9 |
2 3 8
|
mp2 |
⊢ ( 𝜃 → ( 𝜏 → 𝜂 ) ) |
10 |
4 5 9
|
mp2 |
⊢ 𝜂 |