Metamath Proof Explorer


Theorem eel00000

Description: Elimination rule similar eel0000 , except with five hpothesis steps. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel00000.1
|- ph
eel00000.2
|- ps
eel00000.3
|- ch
eel00000.4
|- th
eel00000.5
|- ta
eel00000.6
|- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> et )
Assertion eel00000
|- et

Proof

Step Hyp Ref Expression
1 eel00000.1
 |-  ph
2 eel00000.2
 |-  ps
3 eel00000.3
 |-  ch
4 eel00000.4
 |-  th
5 eel00000.5
 |-  ta
6 eel00000.6
 |-  ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> et )
7 6 exp41
 |-  ( ( ph /\ ps ) -> ( ch -> ( th -> ( ta -> et ) ) ) )
8 1 7 mpan
 |-  ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) )
9 2 3 8 mp2
 |-  ( th -> ( ta -> et ) )
10 4 5 9 mp2
 |-  et