Metamath Proof Explorer


Theorem eel11111

Description: Five-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel11111.1 φψ
eel11111.2 φχ
eel11111.3 φθ
eel11111.4 φτ
eel11111.5 φη
eel11111.6 ψχθτηζ
Assertion eel11111 φζ

Proof

Step Hyp Ref Expression
1 eel11111.1 φψ
2 eel11111.2 φχ
3 eel11111.3 φθ
4 eel11111.4 φτ
5 eel11111.5 φη
6 eel11111.6 ψχθτηζ
7 6 exp41 ψχθτηζ
8 7 ex ψχθτηζ
9 1 2 3 8 syl3c φτηζ
10 4 5 9 mp2d φζ