Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelT00.1 |
|
|
|
eelT00.2 |
|
|
|
eelT00.3 |
|
|
|
eelT00.4 |
|
|
Assertion |
eelT00 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eelT00.1 |
|
| 2 |
|
eelT00.2 |
|
| 3 |
|
eelT00.3 |
|
| 4 |
|
eelT00.4 |
|
| 5 |
|
3anass |
|
| 6 |
|
truan |
|
| 7 |
5 6
|
bitri |
|
| 8 |
1 4
|
syl3an1 |
|
| 9 |
7 8
|
sylbir |
|
| 10 |
2 9
|
mpan |
|
| 11 |
3 10
|
ax-mp |
|