Metamath Proof Explorer


Theorem eff1o

Description: The exponential function maps the set S , of complex numbers with imaginary part in the closed-above, open-below interval from -upi to pi one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Hypothesis eff1o.1 S = -1 π π
Assertion eff1o exp S : S 1-1 onto 0

Proof

Step Hyp Ref Expression
1 eff1o.1 S = -1 π π
2 pire π
3 2 renegcli π
4 eqid w π π e i w = w π π e i w
5 rexr π π *
6 iocssre π * π π π
7 5 2 6 sylancl π π π
8 picn π
9 8 2timesi 2 π = π + π
10 9 oveq2i - π + 2 π = π + π + π
11 negpicn π
12 8 8 addcli π + π
13 11 12 addcomi π + π + π = π + π + π
14 12 8 negsubi π + π + π = π + π - π
15 8 8 pncan3oi π + π - π = π
16 14 15 eqtri π + π + π = π
17 10 13 16 3eqtrri π = - π + 2 π
18 17 oveq2i π π = π - π + 2 π
19 18 efif1olem1 π x π π y π π x y < 2 π
20 18 efif1olem2 π z y π π z y 2 π
21 4 1 7 19 20 eff1olem π exp S : S 1-1 onto 0
22 3 21 ax-mp exp S : S 1-1 onto 0