Metamath Proof Explorer


Theorem eff1olem

Description: The exponential function maps the set S , of complex numbers with imaginary part in a real interval of length 2 x. _pi , one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Proof shortened by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses eff1olem.1 F=wDeiw
eff1olem.2 S=-1D
eff1olem.3 φD
eff1olem.4 φxDyDxy<2π
eff1olem.5 φzyDzy2π
Assertion eff1olem φexpS:S1-1 onto0

Proof

Step Hyp Ref Expression
1 eff1olem.1 F=wDeiw
2 eff1olem.2 S=-1D
3 eff1olem.3 φD
4 eff1olem.4 φxDyDxy<2π
5 eff1olem.5 φzyDzy2π
6 cnvimass -1Ddom
7 imf :
8 7 fdmi dom=
9 8 eqcomi =dom
10 6 2 9 3sstr4i S
11 eff2 exp:0
12 11 a1i Sexp:0
13 12 feqmptd Sexp=yey
14 13 reseq1d SexpS=yeyS
15 resmpt SyeyS=ySey
16 14 15 eqtrd SexpS=ySey
17 10 16 ax-mp expS=ySey
18 10 sseli ySy
19 11 ffvelcdmi yey0
20 18 19 syl ySey0
21 20 adantl φySey0
22 simpr φx0x0
23 eldifsn x0xx0
24 22 23 sylib φx0xx0
25 24 simpld φx0x
26 24 simprd φx0x0
27 25 26 absrpcld φx0x+
28 reeff1o exp:1-1 onto+
29 f1ocnv exp:1-1 onto+exp-1:+1-1 onto
30 f1of exp-1:+1-1 ontoexp-1:+
31 28 29 30 mp2b exp-1:+
32 31 ffvelcdmi x+exp-1x
33 27 32 syl φx0exp-1x
34 33 recnd φx0exp-1x
35 ax-icn i
36 3 adantr φx0D
37 eqid abs-11=abs-11
38 eqid sinπ2π2=sinπ2π2
39 1 37 3 4 5 38 efif1olem4 φF:D1-1 ontoabs-11
40 f1ocnv F:D1-1 ontoabs-11F-1:abs-111-1 ontoD
41 f1of F-1:abs-111-1 ontoDF-1:abs-11D
42 39 40 41 3syl φF-1:abs-11D
43 42 adantr φx0F-1:abs-11D
44 25 abscld φx0x
45 44 recnd φx0x
46 25 26 absne0d φx0x0
47 25 45 46 divcld φx0xx
48 25 45 46 absdivd φx0xx=xx
49 absidm xx=x
50 25 49 syl φx0x=x
51 50 oveq2d φx0xx=xx
52 45 46 dividd φx0xx=1
53 48 51 52 3eqtrd φx0xx=1
54 absf abs:
55 ffn abs:absFn
56 fniniseg absFnxxabs-11xxxx=1
57 54 55 56 mp2b xxabs-11xxxx=1
58 47 53 57 sylanbrc φx0xxabs-11
59 43 58 ffvelcdmd φx0F-1xxD
60 36 59 sseldd φx0F-1xx
61 60 recnd φx0F-1xx
62 mulcl iF-1xxiF-1xx
63 35 61 62 sylancr φx0iF-1xx
64 34 63 addcld φx0exp-1x+iF-1xx
65 33 60 crimd φx0exp-1x+iF-1xx=F-1xx
66 65 59 eqeltrd φx0exp-1x+iF-1xxD
67 ffn :Fn
68 elpreima Fnexp-1x+iF-1xx-1Dexp-1x+iF-1xxexp-1x+iF-1xxD
69 7 67 68 mp2b exp-1x+iF-1xx-1Dexp-1x+iF-1xxexp-1x+iF-1xxD
70 64 66 69 sylanbrc φx0exp-1x+iF-1xx-1D
71 70 2 eleqtrrdi φx0exp-1x+iF-1xxS
72 efadd exp-1xiF-1xxeexp-1x+iF-1xx=eexp-1xeiF-1xx
73 34 63 72 syl2anc φx0eexp-1x+iF-1xx=eexp-1xeiF-1xx
74 33 fvresd φx0expexp-1x=eexp-1x
75 f1ocnvfv2 exp:1-1 onto+x+expexp-1x=x
76 28 27 75 sylancr φx0expexp-1x=x
77 74 76 eqtr3d φx0eexp-1x=x
78 oveq2 z=F-1xxiz=iF-1xx
79 78 fveq2d z=F-1xxeiz=eiF-1xx
80 oveq2 w=ziw=iz
81 80 fveq2d w=zeiw=eiz
82 81 cbvmptv wDeiw=zDeiz
83 1 82 eqtri F=zDeiz
84 fvex eiF-1xxV
85 79 83 84 fvmpt F-1xxDFF-1xx=eiF-1xx
86 59 85 syl φx0FF-1xx=eiF-1xx
87 39 adantr φx0F:D1-1 ontoabs-11
88 f1ocnvfv2 F:D1-1 ontoabs-11xxabs-11FF-1xx=xx
89 87 58 88 syl2anc φx0FF-1xx=xx
90 86 89 eqtr3d φx0eiF-1xx=xx
91 77 90 oveq12d φx0eexp-1xeiF-1xx=xxx
92 25 45 46 divcan2d φx0xxx=x
93 73 91 92 3eqtrrd φx0x=eexp-1x+iF-1xx
94 93 adantrl φySx0x=eexp-1x+iF-1xx
95 fveq2 y=exp-1x+iF-1xxey=eexp-1x+iF-1xx
96 95 eqeq2d y=exp-1x+iF-1xxx=eyx=eexp-1x+iF-1xx
97 94 96 syl5ibrcom φySx0y=exp-1x+iF-1xxx=ey
98 18 adantl φySy
99 98 replimd φySy=y+iy
100 absef yey=ey
101 98 100 syl φySey=ey
102 98 recld φySy
103 102 fvresd φySexpy=ey
104 101 103 eqtr4d φySey=expy
105 104 fveq2d φySexp-1ey=exp-1expy
106 f1ocnvfv1 exp:1-1 onto+yexp-1expy=y
107 28 102 106 sylancr φySexp-1expy=y
108 105 107 eqtrd φySexp-1ey=y
109 98 imcld φySy
110 109 recnd φySy
111 mulcl iyiy
112 35 110 111 sylancr φySiy
113 efcl iyeiy
114 112 113 syl φySeiy
115 102 recnd φySy
116 efcl yey
117 115 116 syl φySey
118 efne0 yey0
119 115 118 syl φySey0
120 114 117 119 divcan3d φySeyeiyey=eiy
121 99 fveq2d φySey=ey+iy
122 efadd yiyey+iy=eyeiy
123 115 112 122 syl2anc φySey+iy=eyeiy
124 121 123 eqtrd φySey=eyeiy
125 124 101 oveq12d φySeyey=eyeiyey
126 elpreima Fny-1DyyD
127 7 67 126 mp2b y-1DyyD
128 127 simprbi y-1DyD
129 128 2 eleq2s ySyD
130 129 adantl φySyD
131 oveq2 w=yiw=iy
132 131 fveq2d w=yeiw=eiy
133 fvex eiyV
134 132 1 133 fvmpt yDFy=eiy
135 130 134 syl φySFy=eiy
136 120 125 135 3eqtr4d φySeyey=Fy
137 136 fveq2d φySF-1eyey=F-1Fy
138 f1ocnvfv1 F:D1-1 ontoabs-11yDF-1Fy=y
139 39 129 138 syl2an φySF-1Fy=y
140 137 139 eqtrd φySF-1eyey=y
141 140 oveq2d φySiF-1eyey=iy
142 108 141 oveq12d φySexp-1ey+iF-1eyey=y+iy
143 99 142 eqtr4d φySy=exp-1ey+iF-1eyey
144 fveq2 x=eyx=ey
145 144 fveq2d x=eyexp-1x=exp-1ey
146 id x=eyx=ey
147 146 144 oveq12d x=eyxx=eyey
148 147 fveq2d x=eyF-1xx=F-1eyey
149 148 oveq2d x=eyiF-1xx=iF-1eyey
150 145 149 oveq12d x=eyexp-1x+iF-1xx=exp-1ey+iF-1eyey
151 150 eqeq2d x=eyy=exp-1x+iF-1xxy=exp-1ey+iF-1eyey
152 143 151 syl5ibrcom φySx=eyy=exp-1x+iF-1xx
153 152 adantrr φySx0x=eyy=exp-1x+iF-1xx
154 97 153 impbid φySx0y=exp-1x+iF-1xxx=ey
155 17 21 71 154 f1o2d φexpS:S1-1 onto0