Metamath Proof Explorer


Theorem efmndbasf

Description: Elements in the monoid of endofunctions on A are functions from A into itself. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B=BaseG
Assertion efmndbasf FBF:AA

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B=BaseG
3 1 2 elefmndbas2 FBFBF:AA
4 3 ibi FBF:AA