Metamath Proof Explorer


Theorem efmndplusg

Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndtset.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndplusg.b B=BaseG
efmndplusg.p +˙=+G
Assertion efmndplusg +˙=fB,gBfg

Proof

Step Hyp Ref Expression
1 efmndtset.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndplusg.b B=BaseG
3 efmndplusg.p +˙=+G
4 1 2 efmndbas B=AA
5 eqid fB,gBfg=fB,gBfg
6 eqid 𝑡A×𝒫A=𝑡A×𝒫A
7 1 4 5 6 efmnd AVG=BasendxB+ndxfB,gBfgTopSetndx𝑡A×𝒫A
8 7 fveq2d AV+G=+BasendxB+ndxfB,gBfgTopSetndx𝑡A×𝒫A
9 2 fvexi BV
10 9 9 mpoex fB,gBfgV
11 eqid BasendxB+ndxfB,gBfgTopSetndx𝑡A×𝒫A=BasendxB+ndxfB,gBfgTopSetndx𝑡A×𝒫A
12 11 topgrpplusg fB,gBfgVfB,gBfg=+BasendxB+ndxfB,gBfgTopSetndx𝑡A×𝒫A
13 10 12 ax-mp fB,gBfg=+BasendxB+ndxfB,gBfgTopSetndx𝑡A×𝒫A
14 8 3 13 3eqtr4g AV+˙=fB,gBfg
15 fvprc Could not format ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) : No typesetting found for |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) with typecode |-
16 1 15 eqtrid ¬AVG=
17 16 fveq2d ¬AV+G=+
18 plusgid +𝑔=Slot+ndx
19 18 str0 =+
20 17 3 19 3eqtr4g ¬AV+˙=
21 16 fveq2d ¬AVBaseG=Base
22 base0 =Base
23 21 2 22 3eqtr4g ¬AVB=
24 23 olcd ¬AVB=B=
25 0mpo0 B=B=fB,gBfg=
26 24 25 syl ¬AVfB,gBfg=
27 20 26 eqtr4d ¬AV+˙=fB,gBfg
28 14 27 pm2.61i +˙=fB,gBfg