Metamath Proof Explorer


Theorem efneg

Description: The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efneg AeA=1eA

Proof

Step Hyp Ref Expression
1 efcl AeA
2 negcl AA
3 efcl AeA
4 2 3 syl AeA
5 efne0 AeA0
6 efcan AeAeA=1
7 1 4 5 6 mvllmuld AeA=1eA