Metamath Proof Explorer


Theorem eftval

Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis eftval.1 F=n0Ann!
Assertion eftval N0FN=ANN!

Proof

Step Hyp Ref Expression
1 eftval.1 F=n0Ann!
2 oveq2 n=NAn=AN
3 fveq2 n=Nn!=N!
4 2 3 oveq12d n=NAnn!=ANN!
5 ovex ANN!V
6 4 1 5 fvmpt N0FN=ANN!