Metamath Proof Explorer
		
		
		
		Description:  Utility theorem: reverse closure for any structure defined as a
       function.  (Contributed by Stefan O'Rear, 24-Aug-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | elbasfv.s |  | 
					
						|  |  | elbasfv.b |  | 
				
					|  | Assertion | elbasfv |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elbasfv.s |  | 
						
							| 2 |  | elbasfv.b |  | 
						
							| 3 |  | n0i |  | 
						
							| 4 |  | fvprc |  | 
						
							| 5 | 1 4 | eqtrid |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 |  | base0 |  | 
						
							| 8 | 6 2 7 | 3eqtr4g |  | 
						
							| 9 | 3 8 | nsyl2 |  |