Metamath Proof Explorer


Theorem eldisjn0elb

Description: Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024)

Ref Expression
Assertion eldisjn0elb ElDisjA¬ADisjE-1AdomE-1A/E-1A=A

Proof

Step Hyp Ref Expression
1 df-eldisj ElDisjADisjE-1A
2 n0el3 ¬AdomE-1A/E-1A=A
3 1 2 anbi12i ElDisjA¬ADisjE-1AdomE-1A/E-1A=A