Metamath Proof Explorer


Theorem disjxrn

Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020) (Revised by Peter Mazsa, 21-Sep-2021)

Ref Expression
Assertion disjxrn Disj R S R -1 S -1 I

Proof

Step Hyp Ref Expression
1 xrnrel Rel R S
2 dfdisjALTV2 Disj R S R S -1 I Rel R S
3 1 2 mpbiran2 Disj R S R S -1 I
4 1cosscnvxrn R S -1 = R -1 S -1
5 4 sseq1i R S -1 I R -1 S -1 I
6 3 5 bitri Disj R S R -1 S -1 I