Metamath Proof Explorer


Theorem disjxrn

Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020) (Revised by Peter Mazsa, 21-Sep-2021)

Ref Expression
Assertion disjxrn
|- ( Disj ( R |X. S ) <-> ( ,~ `' R i^i ,~ `' S ) C_ _I )

Proof

Step Hyp Ref Expression
1 xrnrel
 |-  Rel ( R |X. S )
2 dfdisjALTV2
 |-  ( Disj ( R |X. S ) <-> ( ,~ `' ( R |X. S ) C_ _I /\ Rel ( R |X. S ) ) )
3 1 2 mpbiran2
 |-  ( Disj ( R |X. S ) <-> ,~ `' ( R |X. S ) C_ _I )
4 1cosscnvxrn
 |-  ,~ `' ( R |X. S ) = ( ,~ `' R i^i ,~ `' S )
5 4 sseq1i
 |-  ( ,~ `' ( R |X. S ) C_ _I <-> ( ,~ `' R i^i ,~ `' S ) C_ _I )
6 3 5 bitri
 |-  ( Disj ( R |X. S ) <-> ( ,~ `' R i^i ,~ `' S ) C_ _I )