Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020) (Revised by Peter Mazsa, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjxrn | ⊢ ( Disj ( 𝑅 ⋉ 𝑆 ) ↔ ( ≀ ◡ 𝑅 ∩ ≀ ◡ 𝑆 ) ⊆ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel | ⊢ Rel ( 𝑅 ⋉ 𝑆 ) | |
| 2 | dfdisjALTV2 | ⊢ ( Disj ( 𝑅 ⋉ 𝑆 ) ↔ ( ≀ ◡ ( 𝑅 ⋉ 𝑆 ) ⊆ I ∧ Rel ( 𝑅 ⋉ 𝑆 ) ) ) | |
| 3 | 1 2 | mpbiran2 | ⊢ ( Disj ( 𝑅 ⋉ 𝑆 ) ↔ ≀ ◡ ( 𝑅 ⋉ 𝑆 ) ⊆ I ) |
| 4 | 1cosscnvxrn | ⊢ ≀ ◡ ( 𝑅 ⋉ 𝑆 ) = ( ≀ ◡ 𝑅 ∩ ≀ ◡ 𝑆 ) | |
| 5 | 4 | sseq1i | ⊢ ( ≀ ◡ ( 𝑅 ⋉ 𝑆 ) ⊆ I ↔ ( ≀ ◡ 𝑅 ∩ ≀ ◡ 𝑆 ) ⊆ I ) |
| 6 | 3 5 | bitri | ⊢ ( Disj ( 𝑅 ⋉ 𝑆 ) ↔ ( ≀ ◡ 𝑅 ∩ ≀ ◡ 𝑆 ) ⊆ I ) |