Metamath Proof Explorer


Theorem 1cosscnvxrn

Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)

Ref Expression
Assertion 1cosscnvxrn ( 𝐴𝐵 ) = ( ≀ 𝐴 ∩ ≀ 𝐵 )

Proof

Step Hyp Ref Expression
1 br1cosscnvxrn ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝐴𝐵 ) 𝑦 ↔ ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) ) )
2 1 el2v ( 𝑥 ( 𝐴𝐵 ) 𝑦 ↔ ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) )
3 2 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝐴𝐵 ) 𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) }
4 inopab ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐴 𝑦 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐵 𝑦 } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) }
5 3 4 eqtr4i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝐴𝐵 ) 𝑦 } = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐴 𝑦 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐵 𝑦 } )
6 relcoss Rel ≀ ( 𝐴𝐵 )
7 dfrel4v ( Rel ≀ ( 𝐴𝐵 ) ↔ ≀ ( 𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝐴𝐵 ) 𝑦 } )
8 6 7 mpbi ( 𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 𝐴𝐵 ) 𝑦 }
9 relcoss Rel ≀ 𝐴
10 dfrel4v ( Rel ≀ 𝐴 ↔ ≀ 𝐴 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐴 𝑦 } )
11 9 10 mpbi 𝐴 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐴 𝑦 }
12 relcoss Rel ≀ 𝐵
13 dfrel4v ( Rel ≀ 𝐵 ↔ ≀ 𝐵 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐵 𝑦 } )
14 12 13 mpbi 𝐵 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐵 𝑦 }
15 11 14 ineq12i ( ≀ 𝐴 ∩ ≀ 𝐵 ) = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐴 𝑦 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝐵 𝑦 } )
16 5 8 15 3eqtr4i ( 𝐴𝐵 ) = ( ≀ 𝐴 ∩ ≀ 𝐵 )