Step |
Hyp |
Ref |
Expression |
1 |
|
relopabv |
⊢ Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } |
2 |
|
relin1 |
⊢ ( Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → Rel ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) ) |
3 |
1 2
|
ax-mp |
⊢ Rel ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) |
4 |
|
relopabv |
⊢ Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑 ∧ 𝜓 ) } |
5 |
|
sban |
⊢ ( [ 𝑧 / 𝑥 ] ( [ 𝑤 / 𝑦 ] 𝜑 ∧ [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ) ) |
6 |
|
sban |
⊢ ( [ 𝑤 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑤 / 𝑦 ] 𝜑 ∧ [ 𝑤 / 𝑦 ] 𝜓 ) ) |
7 |
6
|
sbbii |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝑧 / 𝑥 ] ( [ 𝑤 / 𝑦 ] 𝜑 ∧ [ 𝑤 / 𝑦 ] 𝜓 ) ) |
8 |
|
vopelopabsb |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
9 |
|
vopelopabsb |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ) |
10 |
8 9
|
anbi12i |
⊢ ( ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∧ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) ↔ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ) ) |
11 |
5 7 10
|
3bitr4ri |
⊢ ( ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∧ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ) |
12 |
|
elin |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ ∈ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) ↔ ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∧ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) ) |
13 |
|
vopelopabsb |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑 ∧ 𝜓 ) } ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ ∈ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) ↔ ⟨ 𝑧 , 𝑤 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑 ∧ 𝜓 ) } ) |
15 |
3 4 14
|
eqrelriiv |
⊢ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑 ∧ 𝜓 ) } |