| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrnres2 |
|- ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |
| 2 |
1
|
disjeqi |
|- ( Disj ( ( R |X. S ) |` A ) <-> Disj ( R |X. ( S |` A ) ) ) |
| 3 |
|
xrnrel |
|- Rel ( R |X. S ) |
| 4 |
|
disjres |
|- ( Rel ( R |X. S ) -> ( Disj ( ( R |X. S ) |` A ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( Disj ( ( R |X. S ) |` A ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) |
| 6 |
2 5
|
bitr3i |
|- ( Disj ( R |X. ( S |` A ) ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. S ) i^i [ v ] ( R |X. S ) ) = (/) ) ) |