| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrnres2 |
⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) |
| 2 |
1
|
disjeqi |
⊢ ( Disj ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) ↔ Disj ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ) |
| 3 |
|
xrnrel |
⊢ Rel ( 𝑅 ⋉ 𝑆 ) |
| 4 |
|
disjres |
⊢ ( Rel ( 𝑅 ⋉ 𝑆 ) → ( Disj ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( Disj ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) |
| 6 |
2 5
|
bitr3i |
⊢ ( Disj ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝑣 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ) ) |